Senin, 10 April 2017

contoh soal bab 2



CONTOH SOAL:
1.      Gambarlah titik-titik berikut pada bidang koordinat Cartesius.
a. P (–4,–2)   c. R (0, –3)    e. T (3, 3)
b. Q (–2, 0)   d. S (1, –2)
Jawab :
2.      Tentukanlah gradien dari persamaan garis berikut.
a. y = 4x + 6      d. 3y = 6 + 9x
b. y = –5x – 8     e. 2 + 4y = 3x + 5
c. 2y = x + 12
Jawab :
a. Persamaan garis y = 4x + 6 sudah memenuhi bentuk y = mx + c. Jadi, nilai m = 4.
b. Persamaan garis y = –5x – 8 sudah memenuhi bentuk y = mx + c. Jadi, nilai m = –5.
c. Persamaan garis 2y = x + 12 diubah terlebih dahulu menjadi bentuk y = mx + c
sehingga
d. Persamaan garis 3y = 6 + 9x diubah terlebih dahulu menjadi bentuk y = mx + c
sehingga
e. Persamaan garis 2 + 4y = 3x +5 diubah terlebih dahulu menjadi bentuk y = mx + c
sehingga
3.      Tentukan persamaan garis yang melalui titik P(3, 5) dan memiliki gradien –2.
Jawab :
Untuk titik P(3, 5) maka x1 = 3, y1 = 5.
Dengan menggunakan rumus umum, diperoleh persamaan garis:
fi y – y1 = m (x – x1)
y – 5 = –2 (x – 3)
y – 5 = –2x + 6
y = –2x + 6 + 5
y = –2x + 11 atau 2x + y – 11 = 0

4.      Tentukan persamaan garis yang melalui:
a. titik K(–2, –4) dan sejajar dengan garis 3x + y – 5 = 0,
b. titik R(1, –3) dan sejajar dengan garis yang melalui titik A(4, 1) dan B(–1, 2),
c. titik L(5, 1) dan tegak lurus dengan garis x –2y + 3 = 0.
Jawab :
a. • Langkah pertama, tentukan gradien garis 3x + y – 5 = 0.
3x + y – 5 = 0
y = –3x + 5
diperoleh m = –3.
• Oleh karena garis h sejajar dengan garis 3x + y – 5 = 0 maka garis h
memiliki gradien yang sama, yaitu m = –3.
Garis h melalui K(–2, –4) maka x1 = –2, y1 = –4.
• Langkah kedua, tentukan persamaan garis h sebagai berikut
y – y1 = m (x – x1)
y – (–4) = –3(x – (–2))
y + 4 = –3x – 6
y = –3x – 6 – 4
y = –3x –10
Jadi, persamaan garis h adalah y = –3x – 10 atau 3x + y + 10 = 0
b. • Langkah pertama, tentukan gradien garis yang melalui titik A(4, –1) dan B(–1, 2).
Untuk titik A(4, –1) maka x1 = 4, y1 = –1.
Untuk titik B(–1, 2) maka x2 = –1, y2 = 2.
• Oleh karena garis h sejajar dengan garis yang melalui titik A dan B
maka garis h yang melalui titik R (1, –3) memiliki gradien yang sama
dengan garis AB yaitu
Untuk titik R(1, –3) maka x1 = 1, y1 = –3
• Langkah kedua, tentukan persamaan garis h dengan rumus
c. • Langkah pertama, tentukan gradien garis x – 2y + 3 = 0.
• Oleh karena h tegak lurus dengan garis x – 2y + 3 = 0 maka gradien
garis h yang melalui titik L(5, 1) adalah
• Langkah kedua, tentukan persamaan garis mL = mh = gradien garis h
melalui titik L(5, 1) dengan h melalui gradien m = –2.
Untuk titik L(5, 1) maka x1 = 5, y1 = 1.
5.      Tentukan persamaan garis yang melalui titik-titik koordinat berikut.
a. A (3, 3) dan B (2, 1)
b. C (–1, 4) dan D (1, 3)
c. E (6, 10) dan F (–5, 2)
Jawab :
a. Untuk titik A (3, 3) maka x1 = 3 dan y1 = 3.
Untuk titik B (2, 1) maka x2 = 2 dan y2 =1.
Persamaan yang diperoleh:
–1 (y – 3) = –2 (x – 3)
–y + 3 = –2x + 6
2x – y + 3 – 6 = 0
2x – y – 3 = 0
Jadi, persamaan garisnya adalah 2x – y – 3 = 0.
b. Untuk titik C (–1, 4) maka x1 = –1 dan y1 = 4
Untuk titik D (1, 3) maka x2 = 1 dan y2 = 3
Persamaan garis yang diperoleh:
Jadi, persamaan garisnya adalah x + 2y – 7 = 0.
c. Untuk titik E (6, 10) maka x1 = 6 dan y1=10
Untuk titik F(–5, 2) maka x2 = –5 dan y2 = 2
Persamaan garis yang diperoleh:

6.      Dengan cara substitusi, tentukan koordinat titik potong antara garis 3x + y = 5 dan
garis 2x – 3y = 7.
Jawab :
Ikuti langkah-langkah berikut.
• Ambil salah satu persamaan garis, misalnya 3x + y = 5.
• Tentukan salah satu variabel dari garis tersebut, misalnya y.
3x + y = 5 maka y = 5 – 3x.
• Substitusikan nilai y tersebut ke dalam persamaan garis yang lain.
2x – 3y = 7
2x – 3(5 – 3x) = 7
2x – 15 + 9x = 7
2x + 9x = 7 + 15
11x = 22
x = 2
• Substitusikan nilai x ke dalam salah satu persamaan garis.
3x + y = 5
3 (2) + y = 5
6 + y = 5
y = 5 – 6
y = –1
• Diperoleh x = 2 dan y = –1. Jadi, koordinat titik potong kedua garis itu adalah (2, –1)